Solve each problem.

1) A water hose had filled up $1 / 7$ of a pool after $1 / 10$ of an hour. At this rate, how many hours would it take to fill the pool?
2) A snail going full speed was taking $1 / 2$ of a minute to move $1 / 2$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?
3) A pencil making machine took $1 / 10$ of a second to make enough pencils to fill $1 / 2$ of a box. At this rate, how long would it take the machine to fill the entire box?
4) A dejuicer was able to squeeze a pint of juice from $1 / 10$ bag of oranges. This amount of juice filled up $1 / 3$ of a jug. At this rate, how many bags will it take to fill the entire jug?
5) Haley spent $1 / 2$ of an hour playing on her phone. That used up $1 / 9$ of her battery. How long would she have to play on her phone to use the entire battery?
6) While exercising Ned walked $1 / 9$ of a mile in $1 / 2$ of an hour. At this rate, how far will he have travelled after an hour?
7) A carpenter used $1 / 2$ of a box of nails while working on a birdhouse and was able to finish $1 / 4$ of it. At this rate, how many boxes will he need to finish the entire birdhouse?
8) A chef used $1 / 4$ of a bag of potatoes to make $1 / 9$ of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?
9) A restaurant took $1 / 10$ of an hour to use $1 / 3$ of a package of napkins. At this rate, how many hours would it take to use the entire package?
10) A water hose had filled up $1 / 2$ of a pool after $1 / 2$ of an hour. At this rate, how many hours would it take to fill the pool?

Answers
1.
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad

Solve each problem.

1) A water hose had filled up $1 / 7$ of a pool after $1 / 10$ of an hour. At this rate, how many hours would it take to fill the pool?
2) A snail going full speed was taking $1 / 2$ of a minute to move $1 / 2$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?
3) A pencil making machine took $1 / 10$ of a second to make enough pencils to fill $1 / 2$ of a box. At this rate, how long would it take the machine to fill the entire box?
4) A dejuicer was able to squeeze a pint of juice from $1 / 10$ bag of oranges. This amount of juice filled up $1 / 3$ of a jug. At this rate, how many bags will it take to fill the entire jug?
5) Haley spent $1 / 2$ of an hour playing on her phone. That used up $1 / 9$ of her battery. How long would she have to play on her phone to use the entire battery?
6) While exercising Ned walked $1 / 9$ of a mile in $1 / 2$ of an hour. At this rate, how far will he have travelled after an hour?
7) A carpenter used $1 / 2$ of a box of nails while working on a birdhouse and was able to finish $1 / 4$ of it. At this rate, how many boxes will he need to finish the entire birdhouse?
8) A chef used $1 / 4$ of a bag of potatoes to make $1 / 9$ of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?
9) A restaurant took $1 / 10$ of an hour to use $1 / 3$ of a package of napkins. At this rate, how many hours would it take to use the entire package?
10) A water hose had filled up $1 / 2$ of a pool after $1 / 2$ of an hour. At this rate, how many hours would it take to fill the pool?

Answers

1. \qquad
2. \qquad
3. \qquad 3
4. \qquad
5.

$4 / 2$ hours
$2 / 9$ mile

7. \qquad
8.

$21 / 4$ bags
$3 / 10$ hour

10. \qquad

Solve each problem.

1) A water hose had filled up $1 / 4$ of a pool after $1 / 7$ of an hour. At this rate, how many hours would it take to fill the pool?
2) A snail going full speed was taking $1 / 5$ of a minute to move $1 / 9$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?
3) A pencil making machine took $1 / 7$ of a second to make enough pencils to fill $1 / 10$ of a box. At this rate, how long would it take the machine to fill the entire box?
4) A dejuicer was able to squeeze a pint of juice from $1 / 10$ bag of oranges. This amount of juice filled up $1 / 10$ of a jug. At this rate, how many bags will it take to fill the entire jug?
5) Janet spent $1 / 9$ of an hour playing on her phone. That used up $1 / 4$ of her battery. How long would she have to play on her phone to use the entire battery?
6) While exercising Mike walked $1 / 8$ of a mile in $1 / 6$ of an hour. At this rate, how far will he have travelled after an hour?
7) A carpenter used $1 / 2$ of a box of nails while working on a birdhouse and was able to finish $1 / 5$ of it. At this rate, how many boxes will he need to finish the entire birdhouse?
8) A chef used $1 / 9$ of a bag of potatoes to make $1 / 5$ of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?
9) A restaurant took $1 / 10$ of an hour to use $1 / 9$ of a package of napkins. At this rate, how many hours would it take to use the entire package?
10) A water hose had filled up $1 / 3$ of a pool after $1 / 10$ of an hour. At this rate, how many hours would it take to fill the pool?

Answers
1.
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad

Solve each problem.

1) A water hose had filled up $1 / 4$ of a pool after $1 / 7$ of an hour. At this rate, how many hours would it take to fill the pool?
2) A snail going full speed was taking $1 / 5$ of a minute to move $1 / 9$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?
3) A pencil making machine took $1 / 7$ of a second to make enough pencils to fill $1 / 10$ of a box. At this rate, how long would it take the machine to fill the entire box?
4) A dejuicer was able to squeeze a pint of juice from $1 / 10$ bag of oranges. This amount of juice filled up $1 / 10$ of a jug. At this rate, how many bags will it take to fill the entire jug?
5) Janet spent $1 / 9$ of an hour playing on her phone. That used up $1 / 4$ of her battery. How long would she have to play on her phone to use the entire battery?
6) While exercising Mike walked $1 / 8$ of a mile in $1 / 6$ of an hour. At this rate, how far will he have travelled after an hour?
7) A carpenter used $1 / 2$ of a box of nails while working on a birdhouse and was able to finish $1 / 5$ of it. At this rate, how many boxes will he need to finish the entire birdhouse?
8) A chef used $1 / 9$ of a bag of potatoes to make $1 / 5$ of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?
9) A restaurant took $1 / 10$ of an hour to use $1 / 9$ of a package of napkins. At this rate, how many hours would it take to use the entire package?
10) A water hose had filled up $1 / 3$ of a pool after $1 / 10$ of an hour. At this rate, how many hours would it take to fill the pool?

Answers

1. $4 / 7$ hour
2.

$1 \frac{4}{5}$ minutes
3. \qquad
4. \qquad

5. \qquad
$6 / 8$ mile
6. \qquad $21 / 2$ boxes
7.
$\frac{21 / 2 \text { boxes }}{5 / 9 \mathrm{bag}}$
9.
$\frac{9 / 10 \text { hour }}{31 / 3 \text { hours }}$
10. \qquad

Solve each problem.

1) A water hose had filled up $1 / 9$ of a pool after $1 / 4$ of an hour. At this rate, how many hours would it take to fill the pool?
2) A snail going full speed was taking $1 / 5$ of a minute to move $1 / 7$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?
3) A pencil making machine took $1 / 9$ of a second to make enough pencils to fill $1 / 7$ of a box. At this rate, how long would it take the machine to fill the entire box?
4) A dejuicer was able to squeeze a pint of juice from $1 / 7$ bag of oranges. This amount of juice filled up $1 / 9$ of a jug. At this rate, how many bags will it take to fill the entire jug?
5) Robin spent $1 / 10$ of an hour playing on her phone. That used up $1 / 8$ of her battery. How long would she have to play on her phone to use the entire battery?
6) While exercising Roger walked $1 / 2$ of a mile in $1 / 9$ of an hour. At this rate, how far will he have travelled after an hour?
7) A carpenter used $1 / 8$ of a box of nails while working on a birdhouse and was able to finish $1 / 3$ of it. At this rate, how many boxes will he need to finish the entire birdhouse?
8) A chef used $1 / 7$ of a bag of potatoes to make $1 / 10$ of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?
9) A restaurant took $1 / 3$ of an hour to use $1 / 3$ of a package of napkins. At this rate, how many hours would it take to use the entire package?
10) A water hose had filled up $1 / 9$ of a pool after $1 / 5$ of an hour. At this rate, how many hours would it take to fill the pool?

Answers
1.
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad

Solve each problem.

1) A water hose had filled up $1 / 9$ of a pool after $1 / 4$ of an hour. At this rate, how many hours would it take to fill the pool?
2) A snail going full speed was taking $1 / 5$ of a minute to move $1 / 7$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?
3) A pencil making machine took $1 / 9$ of a second to make enough pencils to fill $1 / 7$ of a box. At this rate, how long would it take the machine to fill the entire box?
4) A dejuicer was able to squeeze a pint of juice from $1 / 7$ bag of oranges. This amount of juice filled up $1 / 9$ of a jug. At this rate, how many bags will it take to fill the entire jug?
5) Robin spent $1 / 10$ of an hour playing on her phone. That used up $1 / 8$ of her battery. How long would she have to play on her phone to use the entire battery?
6) While exercising Roger walked $1 / 2$ of a mile in $1 / 9$ of an hour. At this rate, how far will he have travelled after an hour?
7) A carpenter used $1 / 8$ of a box of nails while working on a birdhouse and was able to finish $1 / 3$ of it. At this rate, how many boxes will he need to finish the entire birdhouse?
8) A chef used $1 / 7$ of a bag of potatoes to make $1 / 10$ of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?
9) A restaurant took $1 / 3$ of an hour to use $1 / 3$ of a package of napkins. At this rate, how many hours would it take to use the entire package?
10) A water hose had filled up $1 / 9$ of a pool after $1 / 5$ of an hour. At this rate, how many hours would it take to fill the pool?

Answers

1. $21 / 4$ hours
2.

$12 / 5$ minutes
3.
4.
$7 / 9$ second
\square
5.
$\frac{8 / 10 \text { hour }}{41 / 2 \text { miles }}$
7. \qquad $1^{3 / 7}$ bags
9. \qquad $5 / 9$ hour

Solve each problem.

1) A water hose had filled up $1 / 3$ of a pool after $1 / 5$ of an hour. At this rate, how many hours would it take to fill the pool?
2) A snail going full speed was taking $1 / 7$ of a minute to move $1 / 9$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?
3) A pencil making machine took $1 / 2$ of a second to make enough pencils to fill $1 / 9$ of a box. At this rate, how long would it take the machine to fill the entire box?
4) A dejuicer was able to squeeze a pint of juice from $1 / 7$ bag of oranges. This amount of juice filled up $1 / 2$ of a jug. At this rate, how many bags will it take to fill the entire jug?
5) Bianca spent $1 / 4$ of an hour playing on her phone. That used up $1 / 2$ of her battery. How long would she have to play on her phone to use the entire battery?
6) While exercising Oliver walked $1 / 7$ of a mile in $1 / 6$ of an hour. At this rate, how far will he have travelled after an hour?
7) A carpenter used $1 / 10$ of a box of nails while working on a birdhouse and was able to finish $1 / 5$ of it. At this rate, how many boxes will he need to finish the entire birdhouse?
8) A chef used $1 / 7$ of a bag of potatoes to make $1 / 5$ of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?
9) A restaurant took $1 / 8$ of an hour to use $1 / 9$ of a package of napkins. At this rate, how many hours would it take to use the entire package?
10) A water hose had filled up $1 / 7$ of a pool after $1 / 6$ of an hour. At this rate, how many hours would it take to fill the pool?

Answers
1.
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad

Solve each problem.

1) A water hose had filled up $1 / 3$ of a pool after $1 / 5$ of an hour. At this rate, how many hours would it take to fill the pool?
2) A snail going full speed was taking $1 / 7$ of a minute to move $1 / 9$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?
3) A pencil making machine took $1 / 2$ of a second to make enough pencils to fill $1 / 9$ of a box. At this rate, how long would it take the machine to fill the entire box?
4) A dejuicer was able to squeeze a pint of juice from $1 / 7$ bag of oranges. This amount of juice filled up $1 / 2$ of a jug. At this rate, how many bags will it take to fill the entire jug?
5) Bianca spent $1 / 4$ of an hour playing on her phone. That used up $1 / 2$ of her battery. How long would she have to play on her phone to use the entire battery?
6) While exercising Oliver walked $1 / 7$ of a mile in $1 / 6$ of an hour. At this rate, how far will he have travelled after an hour?
7) A carpenter used $1 / 10$ of a box of nails while working on a birdhouse and was able to finish $1 / 5$ of it. At this rate, how many boxes will he need to finish the entire birdhouse?
8) A chef used $1 / 7$ of a bag of potatoes to make $1 / 5$ of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?
9) A restaurant took $1 / 8$ of an hour to use $1 / 9$ of a package of napkins. At this rate, how many hours would it take to use the entire package?
10) A water hose had filled up $1 / 7$ of a pool after $1 / 6$ of an hour. At this rate, how many hours would it take to fill the pool?

Answers

1. \qquad
2. \qquad
3. \qquad
4.

\qquad
6.
5.
6. $\quad 6 / 7$ mile
7.

8.

$5 / 7$ bag
$1 / 8$ hours

$6 / 7$ hour

Solve each problem.

1) A water hose had filled up $1 / 7$ of a pool after $\frac{1}{6}$ of an hour. At this rate, how many hours would it take to fill the pool?
2) A snail going full speed was taking $1 / 3$ of a minute to move $1 / 3$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?
3) A pencil making machine took $1 / 8$ of a second to make enough pencils to fill $1 / 6$ of a box. At this rate, how long would it take the machine to fill the entire box?
4) A dejuicer was able to squeeze a pint of juice from $1 / 7$ bag of oranges. This amount of juice filled up $1 / 3$ of a jug. At this rate, how many bags will it take to fill the entire jug?
5) Debby spent $1 / 6$ of an hour playing on her phone. That used up $1 / 5$ of her battery. How long would she have to play on her phone to use the entire battery?
6) While exercising Roger walked $1 / 2$ of a mile in $1 / 3$ of an hour. At this rate, how far will he have travelled after an hour?
7) A carpenter used $1 / 6$ of a box of nails while working on a birdhouse and was able to finish $1 / 7$ of it. At this rate, how many boxes will he need to finish the entire birdhouse?
8) A chef used $1 / 9$ of a bag of potatoes to make $1 / 3$ of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?
9) A restaurant took $1 / 10$ of an hour to use $1 / 2$ of a package of napkins. At this rate, how many hours would it take to use the entire package?
10) A water hose had filled up $1 / 2$ of a pool after $1 / 9$ of an hour. At this rate, how many hours would it take to fill the pool?

Answers
1.
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad

Solve each problem.

1) A water hose had filled up $1 / 7$ of a pool after $1 / 6$ of an hour. At this rate, how many hours would it take to fill the pool?
2) A snail going full speed was taking $1 / 3$ of a minute to move $1 / 3$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?
3) A pencil making machine took $1 / 8$ of a second to make enough pencils to fill $1 / 6$ of a box. At this rate, how long would it take the machine to fill the entire box?
4) A dejuicer was able to squeeze a pint of juice from $1 / 7$ bag of oranges. This amount of juice filled up $1 / 3$ of a jug. At this rate, how many bags will it take to fill the entire jug?
5) Debby spent $1 / 6$ of an hour playing on her phone. That used up $1 / 5$ of her battery. How long would she have to play on her phone to use the entire battery?
6) While exercising Roger walked $1 / 2$ of a mile in $1 / 3$ of an hour. At this rate, how far will he have travelled after an hour?
7) A carpenter used $1 / 6$ of a box of nails while working on a birdhouse and was able to finish $1 / 7$ of it. At this rate, how many boxes will he need to finish the entire birdhouse?
8) A chef used $1 / 9$ of a bag of potatoes to make $1 / 3$ of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?
9) A restaurant took $1 / 10$ of an hour to use $1 / 2$ of a package of napkins. At this rate, how many hours would it take to use the entire package?
10) A water hose had filled up $1 / 2$ of a pool after $1 / 9$ of an hour. At this rate, how many hours would it take to fill the pool?

Answers

1. $1 \frac{1}{6}$ hours
2. \qquad
3. $\quad 6 / 8$ second
4.

$$
3 / 7 \text { bag }
$$

5.

$3 / 7$ bag
$5 / 6$ hour
6. \qquad
8. \qquad
10.

Solve each problem.

1) A water hose had filled up $1 / 8$ of a pool after $1 / 2$ of an hour. At this rate, how many hours would it take to fill the pool?
2) A snail going full speed was taking $1 / 4$ of a minute to move $1 / 2$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?
3) A pencil making machine took $1 / 4$ of a second to make enough pencils to fill $1 / 2$ of a box. At this rate, how long would it take the machine to fill the entire box?
4) A dejuicer was able to squeeze a pint of juice from $1 / 4$ bag of oranges. This amount of juice filled up $1 / 10$ of a jug. At this rate, how many bags will it take to fill the entire jug?
5) Tiffany spent $1 / 9$ of an hour playing on her phone. That used up $1 / 4$ of her battery. How long would she have to play on her phone to use the entire battery?
6) While exercising Oliver walked $1 / 10$ of a mile in $1 / 2$ of an hour. At this rate, how far will he have travelled after an hour?
7) A carpenter used $1 / 3$ of a box of nails while working on a birdhouse and was able to finish $1 / 5$ of it. At this rate, how many boxes will he need to finish the entire birdhouse?
8) A chef used $1 / 4$ of a bag of potatoes to make $1 / 3$ of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?
9) A restaurant took $1 / 4$ of an hour to use $1 / 10$ of a package of napkins. At this rate, how many hours would it take to use the entire package?
10) A water hose had filled up $1 / 4$ of a pool after $1 / 8$ of an hour. At this rate, how many hours would it take to fill the pool?

Answers
1.
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad

Solve each problem.

1) A water hose had filled up $1 / 8$ of a pool after $1 / 2$ of an hour. At this rate, how many hours would it take to fill the pool?
2) A snail going full speed was taking $1 / 4$ of a minute to move $1 / 2$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?
3) A pencil making machine took $1 / 4$ of a second to make enough pencils to fill $1 / 2$ of a box. At this rate, how long would it take the machine to fill the entire box?
4) A dejuicer was able to squeeze a pint of juice from $1 / 4$ bag of oranges. This amount of juice filled up $1 / 10$ of a jug. At this rate, how many bags will it take to fill the entire jug?
5) Tiffany spent $1 / 9$ of an hour playing on her phone. That used up $1 / 4$ of her battery. How long would she have to play on her phone to use the entire battery?
6) While exercising Oliver walked $1 / 10$ of a mile in $1 / 2$ of an hour. At this rate, how far will he have travelled after an hour?
7) A carpenter used $1 / 3$ of a box of nails while working on a birdhouse and was able to finish $1 / 5$ of it. At this rate, how many boxes will he need to finish the entire birdhouse?
8) A chef used $1 / 4$ of a bag of potatoes to make $1 / 3$ of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?
9) A restaurant took $1 / 4$ of an hour to use $1 / 10$ of a package of napkins. At this rate, how many hours would it take to use the entire package?
10) A water hose had filled up $1 / 4$ of a pool after $1 / 8$ of an hour. At this rate, how many hours would it take to fill the pool?

Answers

1. \qquad
2/4 minute
2. $2 / 4$ second
3. \qquad $2 \% / 4$ bags
4.

$2 \frac{2}{4}$ bags
5. \qquad
7.
$12 / 3$ boxes
8.

$3 / 4$ bag
$22 / 4$ hours

10. \qquad

Solve each problem.

1) A water hose had filled up $1 / 8$ of a pool after $1 / 5$ of an hour. At this rate, how many hours would it take to fill the pool?
2) A snail going full speed was taking $1 / 3$ of a minute to move $1 / 9$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?
3) A pencil making machine took $1 / 2$ of a second to make enough pencils to fill $1 / 3$ of a box. At this rate, how long would it take the machine to fill the entire box?
4) A dejuicer was able to squeeze a pint of juice from $1 / 5$ bag of oranges. This amount of juice filled up $1 / 8$ of a jug. At this rate, how many bags will it take to fill the entire jug?
5) Olivia spent $1 / 8$ of an hour playing on her phone. That used up $1 / 7$ of her battery. How long would she have to play on her phone to use the entire battery?
6) While exercising Frank walked $1 / 8$ of a mile in $1 / 5$ of an hour. At this rate, how far will he have travelled after an hour?
7) A carpenter used $1 / 7$ of a box of nails while working on a birdhouse and was able to finish $1 / 10$ of it. At this rate, how many boxes will he need to finish the entire birdhouse?
8) A chef used $1 / 3$ of a bag of potatoes to make $1 / 5$ of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?
9) A restaurant took $1 / 6$ of an hour to use $1 / 7$ of a package of napkins. At this rate, how many hours would it take to use the entire package?
10) A water hose had filled up $1 / 4$ of a pool after $1 / 10$ of an hour. At this rate, how many hours would it take to fill the pool?

Answers
1.
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad

Solve each problem.

1) A water hose had filled up $1 / 8$ of a pool after $1 / 5$ of an hour. At this rate, how many hours would it take to fill the pool?
2) A snail going full speed was taking $1 / 3$ of a minute to move $1 / 9$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?
3) A pencil making machine took $1 / 2$ of a second to make enough pencils to fill $1 / 3$ of a box. At this rate, how long would it take the machine to fill the entire box?
4) A dejuicer was able to squeeze a pint of juice from $1 / 5$ bag of oranges. This amount of juice filled up $1 / 8$ of a jug. At this rate, how many bags will it take to fill the entire jug?
5) Olivia spent $1 / 8$ of an hour playing on her phone. That used up $1 / 7$ of her battery. How long would she have to play on her phone to use the entire battery?
6) While exercising Frank walked $1 / 8$ of a mile in $1 / 5$ of an hour. At this rate, how far will he have travelled after an hour?
7) A carpenter used $1 / 7$ of a box of nails while working on a birdhouse and was able to finish $1 / 10$ of it. At this rate, how many boxes will he need to finish the entire birdhouse?
8) A chef used $1 / 3$ of a bag of potatoes to make $1 / 5$ of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?
9) A restaurant took $1 / 6$ of an hour to use $1 / 7$ of a package of napkins. At this rate, how many hours would it take to use the entire package?
10) A water hose had filled up $1 / 4$ of a pool after $1 / 10$ of an hour. At this rate, how many hours would it take to fill the pool?

Answers

1. $13 / 5$ hours
2. \qquad
$11 / 2$ seconds
3. \qquad
7
4. \qquad
5.

$5 / 8$ mile
7.

$13 / 7$ boxes

8.

$1^{3 / 7}$ boxes
$1^{2 / 1 / 3}$ bags
$2^{2 / 4}$ hours

Solve each problem.

1) A water hose had filled up $1 / 6$ of a pool after $1 / 4$ of an hour. At this rate, how many hours would it take to fill the pool?
2) A snail going full speed was taking $1 / 9$ of a minute to move $1 / 9$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?
3) A pencil making machine took $1 / 7$ of a second to make enough pencils to fill $1 / 6$ of a box. At this rate, how long would it take the machine to fill the entire box?
4) A dejuicer was able to squeeze a pint of juice from $1 / 2$ bag of oranges. This amount of juice filled up $1 / 3$ of a jug. At this rate, how many bags will it take to fill the entire jug?
5) Katie spent $1 / 6$ of an hour playing on her phone. That used up $1 / 3$ of her battery. How long would she have to play on her phone to use the entire battery?
6) While exercising Kaleb walked $1 / 10$ of a mile in $1 / 4$ of an hour. At this rate, how far will he have travelled after an hour?
7) A carpenter used $1 / 9$ of a box of nails while working on a birdhouse and was able to finish $1 / 3$ of it. At this rate, how many boxes will he need to finish the entire birdhouse?
8) A chef used $1 / 2$ of a bag of potatoes to make $1 / 7$ of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?
9) A restaurant took $1 / 3$ of an hour to use $1 / 7$ of a package of napkins. At this rate, how many hours would it take to use the entire package?
10) A water hose had filled up $1 / 8$ of a pool after $1 / 9$ of an hour. At this rate, how many hours would it take to fill the pool?

Answers
1.
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad

Solve each problem.

1) A water hose had filled up $1 / 6$ of a pool after $1 / 4$ of an hour. At this rate, how many hours would it take to fill the pool?
2) A snail going full speed was taking $1 / 9$ of a minute to move $1 / 9$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?
3) A pencil making machine took $1 / 7$ of a second to make enough pencils to fill $1 / 6$ of a box. At this rate, how long would it take the machine to fill the entire box?
4) A dejuicer was able to squeeze a pint of juice from $1 / 2$ bag of oranges. This amount of juice filled up $1 / 3$ of a jug. At this rate, how many bags will it take to fill the entire jug?
5) Katie spent $1 / 6$ of an hour playing on her phone. That used up $1 / 3$ of her battery. How long would she have to play on her phone to use the entire battery?
6) While exercising Kaleb walked $1 / 10$ of a mile in $1 / 4$ of an hour. At this rate, how far will he have travelled after an hour?
7) A carpenter used $1 / 9$ of a box of nails while working on a birdhouse and was able to finish $1 / 3$ of it. At this rate, how many boxes will he need to finish the entire birdhouse?
8) A chef used $1 / 2$ of a bag of potatoes to make $1 / 7$ of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?
9) A restaurant took $1 / 3$ of an hour to use $1 / 7$ of a package of napkins. At this rate, how many hours would it take to use the entire package?
10) A water hose had filled up $1 / 8$ of a pool after $1 / 9$ of an hour. At this rate, how many hours would it take to fill the pool?

Answers

1. 1% hours
2. \qquad
3. \qquad
4. \qquad

- $1 / 2$ bags

5. \qquad
6.

\qquad
7.
$\frac{31 / 2 \text { bags }}{2 \frac{1 / 3 ~ h o u r s ~}{1 / 8} \text { hours }}$
\qquad

Solve each problem.

1) A water hose had filled up $1 / 3$ of a pool after $\frac{1}{6}$ of an hour. At this rate, how many hours would it take to fill the pool?
2) A snail going full speed was taking $1 / 7$ of a minute to move $1 / 7$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?
3) A pencil making machine took $1 / 10$ of a second to make enough pencils to fill $1 / 9$ of a box. At this rate, how long would it take the machine to fill the entire box?
4) A dejuicer was able to squeeze a pint of juice from $1 / 6$ bag of oranges. This amount of juice filled up $1 / 10$ of a jug. At this rate, how many bags will it take to fill the entire jug?
5) Katie spent $1 / 3$ of an hour playing on her phone. That used up $1 / 4$ of her battery. How long would she have to play on her phone to use the entire battery?
6) While exercising Luke walked $1 / 4$ of a mile in $1 / 5$ of an hour. At this rate, how far will he have travelled after an hour?
7) A carpenter used $1 / 3$ of a box of nails while working on a birdhouse and was able to finish $1 / 7$ of it. At this rate, how many boxes will he need to finish the entire birdhouse?
8) A chef used $1 / 5$ of a bag of potatoes to make $1 / 2$ of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?
9) A restaurant took $1 / 2$ of an hour to use $1 / 9$ of a package of napkins. At this rate, how many hours would it take to use the entire package?
10) A water hose had filled up $1 / 9$ of a pool after $1 / 7$ of an hour. At this rate, how many hours would it take to fill the pool?

Answers
1.
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad

Solve each problem.

1) A water hose had filled up $1 / 3$ of a pool after $\frac{1}{6}$ of an hour. At this rate, how many hours would it take to fill the pool?
2) A snail going full speed was taking $1 / 7$ of a minute to move $1 / 7$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?
3) A pencil making machine took $1 / 10$ of a second to make enough pencils to fill $1 / 9$ of a box. At this rate, how long would it take the machine to fill the entire box?
4) A dejuicer was able to squeeze a pint of juice from $1 / 6$ bag of oranges. This amount of juice filled up $1 / 10$ of a jug. At this rate, how many bags will it take to fill the entire jug?
5) Katie spent $1 / 3$ of an hour playing on her phone. That used up $1 / 4$ of her battery. How long would she have to play on her phone to use the entire battery?
6) While exercising Luke walked $1 / 4$ of a mile in $1 / 5$ of an hour. At this rate, how far will he have travelled after an hour?
7) A carpenter used $1 / 3$ of a box of nails while working on a birdhouse and was able to finish $1 / 7$ of it. At this rate, how many boxes will he need to finish the entire birdhouse?
8) A chef used $1 / 5$ of a bag of potatoes to make $1 / 2$ of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?
9) A restaurant took $1 / 2$ of an hour to use $1 / 9$ of a package of napkins. At this rate, how many hours would it take to use the entire package?
10) A water hose had filled up $1 / 9$ of a pool after $1 / 7$ of an hour. At this rate, how many hours would it take to fill the pool?

Answers

1. \qquad
2. $9 / 10$ second
3. \qquad $14 / 6$ bags
4. \qquad
5. \qquad
6.

$11 / 4$ miles
7.
$21 / 3$ boxes
8.
$\frac{2 / 5 \mathrm{bag}}{41 / 2 \text { hours }}$
10. \qquad

Solve each problem.

1) A water hose had filled up $1 / 3$ of a pool after $\frac{1}{4}$ of an hour. At this rate, how many hours would it take to fill the pool?
2) A snail going full speed was taking $1 / 3$ of a minute to move $1 / 7$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?
3) A pencil making machine took $1 / 8$ of a second to make enough pencils to fill $1 / 6$ of a box. At this rate, how long would it take the machine to fill the entire box?
4) A dejuicer was able to squeeze a pint of juice from $1 / 5$ bag of oranges. This amount of juice filled up $1 / 8$ of a jug. At this rate, how many bags will it take to fill the entire jug?
5) Maria spent $1 / 5$ of an hour playing on her phone. That used up $1 / 9$ of her battery. How long would she have to play on her phone to use the entire battery?
6) While exercising Ned walked $1 / 8$ of a mile in $1 / 8$ of an hour. At this rate, how far will he have travelled after an hour?
7) A carpenter used $1 / 8$ of a box of nails while working on a birdhouse and was able to finish $1 / 4$ of it. At this rate, how many boxes will he need to finish the entire birdhouse?
8) A chef used $1 / 4$ of a bag of potatoes to make $1 / 6$ of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?
9) A restaurant took $1 / 9$ of an hour to use $1 / 6$ of a package of napkins. At this rate, how many hours would it take to use the entire package?
10) A water hose had filled up $1 / 9$ of a pool after $1 / 5$ of an hour. At this rate, how many hours would it take to fill the pool?

Answers
1.
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
8. \qquad
9. \qquad
10. \qquad

Solve each problem.

1) A water hose had filled up $1 / 3$ of a pool after $1 / 4$ of an hour. At this rate, how many hours would it take to fill the pool?
2) A snail going full speed was taking $1 / 3$ of a minute to move $1 / 7$ of a centimeter. At this rate, how long would it take the snail to travel a centimeter?
3) A pencil making machine took $1 / 8$ of a second to make enough pencils to fill $1 / 6$ of a box. At this rate, how long would it take the machine to fill the entire box?
4) A dejuicer was able to squeeze a pint of juice from $1 / 5$ bag of oranges. This amount of juice filled up $1 / 8$ of a jug. At this rate, how many bags will it take to fill the entire jug?
5) Maria spent $1 / 5$ of an hour playing on her phone. That used up $1 / 9$ of her battery. How long would she have to play on her phone to use the entire battery?
6) While exercising Ned walked $1 / 8$ of a mile in $1 / 8$ of an hour. At this rate, how far will he have travelled after an hour?
7) A carpenter used $1 / 8$ of a box of nails while working on a birdhouse and was able to finish $1 / 4$ of it. At this rate, how many boxes will he need to finish the entire birdhouse?
8) A chef used $1 / 4$ of a bag of potatoes to make $1 / 6$ of a gallon of stew. If he wanted to make a full gallon of stew how many bags of potatoes would he need?
9) A restaurant took $1 / 9$ of an hour to use $1 / 6$ of a package of napkins. At this rate, how many hours would it take to use the entire package?
10) A water hose had filled up $1 / 9$ of a pool after $1 / 5$ of an hour. At this rate, how many hours would it take to fill the pool?

Answers

1.

$\frac{3 / 4 \text { hour }}{21 / 3 \text { minutes }}$
3. $6 / 8$ second
4. \qquad
6. \qquad
7.
8.

$1 \frac{2}{4}$ bags
$6 / 9$ hour

10. \qquad
